کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
4967957 | 1449386 | 2016 | 23 صفحه PDF | سفارش دهید | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends
ترجمه فارسی عنوان
طرحهای عددی پایدار بدون قید و شرط اولویت دوم و دوم، برای مدل میدان فاز مخلوطهای هموپلیمر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
In this paper, we develop a series of efficient numerical schemes to solve the phase field model for homopolymer blends. The governing system is derived from the energetic variational approach of a total free energy, that consists of a nonlinear logarithmic Flory-Huggins potential, and a gradient entropy with a concentration-dependent de-Gennes type coefficient. The main challenging issue to solve this kind of models numerically is about the time marching problem, i.e., how to develop suitable temporal discretizations for the nonlinear terms in order to preserve the energy stability at the discrete level. We solve this issue in this paper, by developing the first and second order temporal approximation schemes based on the “Invariant Energy Quadratization” method, where all nonlinear terms are treated semi-explicitly. Consequently, the resulting numerical schemes lead to a symmetric positive definite linear system to be solved at each time step. The unconditional energy stabilities are further proved. Various numerical simulations of 2D and 3D are presented to demonstrate the stability and the accuracy of the proposed schemes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Physics - Volume 327, 15 December 2016, Pages 294-316
Journal: Journal of Computational Physics - Volume 327, 15 December 2016, Pages 294-316
نویسندگان
Xiaofeng Yang,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت