کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4968259 1449569 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A case study of tuning MapReduce for efficient Bioinformatics in the cloud
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A case study of tuning MapReduce for efficient Bioinformatics in the cloud
چکیده انگلیسی
The combination of the Hadoop MapReduce programming model and cloud computing allows biological scientists to analyze next-generation sequencing (NGS) data in a timely and cost-effective manner. Cloud computing platforms remove the burden of IT facility procurement and management from end users and provide ease of access to Hadoop clusters. However, biological scientists are still expected to choose appropriate Hadoop parameters for running their jobs. More importantly, the available Hadoop tuning guidelines are either obsolete or too general to capture the particular characteristics of bioinformatics applications. In this study, we aim to minimize the cloud computing cost spent on bioinformatics data analysis by optimizing the extracted significant Hadoop parameters. When using MapReduce-based bioinformatics tools in the cloud, the default settings often lead to resource underutilization and wasteful expenses. We choose k-mer counting, a representative application used in a large number of NGS data analysis tools, as our study case. Experimental results show that, with the fine-tuned parameters, we achieve a total of 4× speedup compared with the original performance (using the default settings). This paper presents an exemplary case for tuning MapReduce-based bioinformatics applications in the cloud, and documents the key parameters that could lead to significant performance benefits.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Parallel Computing - Volume 61, January 2017, Pages 83-95
نویسندگان
, , , ,