کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4968310 | 1449572 | 2016 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
I/O-aware bandwidth allocation for petascale computing systems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In the Big Data era, the gap between the storage performance and an application's I/O requirement is increasing. I/O congestion caused by concurrent storage accesses from multiple applications is inevitable and severely harms the performance. Conventional approaches either focus on optimizing an application's access pattern individually or handle I/O requests on a low-level storage layer without any knowledge from the upper-level applications. In this paper, we present a novel I/O-aware bandwidth allocation framework to coordinate ongoing I/O requests on petascale computing systems. The motivation behind this innovation is that the resource management system has a holistic view of both the system state and jobs' activities and can dynamically control the jobs' status or allocate resource on the fly during their execution. We treat a job's I/O requests as periodical sub-jobs within its lifecycle and transform the I/O congestion issue into a classical scheduling problem. Based on this model, we propose a bandwidth management mechanism as an extension to the existing scheduling system. We design several bandwidth allocation policies with different optimization objectives either on user-oriented metrics or system performance. We conduct extensive trace-based simulations using real job traces and I/O traces from a production IBM Blue Gene/Q system at Argonne National Laboratory. Experimental results demonstrate that our new design can improve job performance by more than 30%, as well as increasing system performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Parallel Computing - Volume 58, October 2016, Pages 107-116
Journal: Parallel Computing - Volume 58, October 2016, Pages 107-116
نویسندگان
Zhou Zhou, Xu Yang, Dongfang Zhao, Paul Rich, Wei Tang, Jia Wang, Zhiling Lan,