کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969261 | 1449928 | 2017 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Representative band selection for hyperspectral image classification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
High dimensional curse for hyperspectral images is one major challenge in image classification. In this work, we introduce a novel spectral band selection method by representative band mining. In the proposed method, the distance between two spectral bands is measured by using disjoint information. For band selection, all spectral bands are first grouped into clusters, and representative bands are selected from these clusters. Different from existing clustering-based band selection methods which select bands from each cluster individually, the proposed method aims to select representative bands simultaneously by exploring the relationship among all band clusters. The optimal representative band selection is based on the criteria of minimizing the distance inside each cluster and maximizing the distance among different representative bands. These selected bands can be further applied in hyperspectral image classification. Experiments are conducted on the 92AV3C Indian Pine data set. Experimental results show that the disjoint information-based spectral band distance measure is effective and the proposed representative band selection approach outperforms state-of-the-art methods for high dimensional image classification.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 48, October 2017, Pages 396-403
Journal: Journal of Visual Communication and Image Representation - Volume 48, October 2017, Pages 396-403
نویسندگان
Ronglu Yang, Lifan Su, Xibin Zhao, Hai Wan, Jiaguang Sun,