کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969282 | 1449928 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Combining multi-layer integration algorithm with background prior and label propagation for saliency detection
ترجمه فارسی عنوان
ترکیب الگوریتم یکپارچه سازی چند لایه با انتشار پیش زمینه و برچسب برای تشخیص حساسیت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
In this paper, we propose a novel approach to automatically detect salient regions in an image. Firstly, some corner superpixels serve as the background labels and the saliency of other superpixels are determined by ranking their similarities to the background labels based on ranking algorithm. Subsequently, we further employ an objectness measure to pick out and propagate foreground labels. Furthermore, an integration algorithm is devised to fuse both background-based saliency map and foreground-based saliency map, meanwhile an original energy function is acted as refinement before integration. Finally, results from multiscale saliency maps are integrated to further improve the detection performance. Our experimental results on five benchmark datasets demonstrate the effectiveness of the proposed method. Our method produces more accurate saliency maps with better precision-recall curve, higher F-measure and lower mean absolute error than other 13 state-of-the-arts approaches on ASD, SED, ECSSD, iCoSeg and PASCAL-S datasets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 48, October 2017, Pages 110-121
Journal: Journal of Visual Communication and Image Representation - Volume 48, October 2017, Pages 110-121
نویسندگان
Chenxing Xia, Hanling Zhang, Xiuju Gao,