کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4969296 1449928 2017 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semi-supervised learning on large-scale geotagged photos for situation recognition
ترجمه فارسی عنوان
یادگیری نیمه نظارتی در عکس های جغرافیایی در مقیاس بزرگ برای تشخیص وضعیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Photos are becoming spontaneous, objective, and universal sources of information. This paper explores evolving situation recognition using photo streams coming from disparate sources combined with the advances of deep learning. Using visual concepts in photos together with space and time information, we formulate the situation detection into a semi-supervised learning framework and propose new graph-based models to solve the problem. To extend the method for unknown situations, we introduce a soft label method that enables the traditional semi-supervised learning framework to accurately predict predefined labels as well as effectively form new clusters. To overcome the noisy data which degrades graph quality, leading to poor recognition results, we take advantage of two kinds of noise-robust norms which can eliminate the adverse effects of outliers in visual concepts and improve the accuracy of situation recognition. Finally, we demonstrate the idea and the effectiveness of the proposed models on Yahoo Flickr Creative Commons 100 Million.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 48, October 2017, Pages 310-316
نویسندگان
, , , ,