کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969315 | 1449931 | 2017 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Facial expression recognition using dual dictionary learning
ترجمه فارسی عنوان
تشخیص بیان صورت با استفاده از یادگیری فرهنگ لغت دوگانه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص چهره، یادگیری فرهنگ لغت دوگانه، نمایندگی انحصاری، طبقه بندی رگرسیون،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
In this paper, a novel method is proposed for Facial Expression Recognition (FER) using dictionary learning to learn both identity and expression dictionaries simultaneously. Accordingly, an automatic and comprehensive feature extraction method is proposed. The proposed method accommodates real-valued scores to a probability of what percent of the given Facial Expression (FE) is present in the input image. To this end, a dual dictionary learning method is proposed to learn both regression and feature dictionaries for FER. Then, two regression classification methods are proposed using a regression model formulated based on dictionary learning and two known classification methods including Sparse Representation Classification (SRC) and Collaborative Representation Classification (CRC). Convincing results are acquired for FER on the CK+, CK, MMI and JAFFE image databases compared to several state-of-the-arts. Also, promising results are obtained from evaluating the proposed method for generalization on other databases. The proposed method not only demonstrates excellent performance by obtaining high accuracy on all four databases but also outperforms other state-of-the-art approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 45, May 2017, Pages 20-33
Journal: Journal of Visual Communication and Image Representation - Volume 45, May 2017, Pages 20-33
نویسندگان
Ali Moeini, Karim Faez, Hossein Moeini, Armon Matthew Safai,