| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 4969428 | 1449935 | 2016 | 41 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Collaborative representation discriminant embedding for image classification
ترجمه فارسی عنوان
نمایندگی همکاری برای تعبیه تصویری برای طبقه بندی تصویر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
یادگیری زیرزمینی، نمایندگی همکاری، تعبیه گراف، حداکثر معیار حاشیه، حداقل مربعات منظم، طبقه بندی عکس،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
In this paper, an effective subspace learning approach, coined collaborative representation discriminant embedding (CRDE), is proposed for image classification. In CRDE, a â2 norm regularized least squares with closed form solution is first applied to pursue the collaborative reconstruction coefficients, which is datum adaptive and computationally more efficient than sparse representation based approaches. Then, the resulted graph is integrated with the modified maximum margin criterion (MMC) to seek the optimal discriminant directions. As a result, the local properties originated in the procedure of collaborative representation and the global discriminative information induced from the modified MMC can be sufficiently exploited. We also show that many popular approaches, such as locality preserving discriminant projections (LPDP), locally linear discriminant embedding (LLDE) and discriminant sparse neighborhood preserving embedding (DSNPE), can be incorporated into our CRDE framework. Experiment results on six databases validate the effectiveness of CRDE compared with nine approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Visual Communication and Image Representation - Volume 41, November 2016, Pages 212-224
Journal: Journal of Visual Communication and Image Representation - Volume 41, November 2016, Pages 212-224
نویسندگان
Ming-Dong Yuan, Da-Zheng Feng, Wen-Juan Liu, Chun-Bao Xiao,
