کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969476 | 1449973 | 2018 | 39 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
IDNet: Smartphone-based gait recognition with convolutional neural networks
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
Feature extraction - استخراج ویژگیClassification methods - روش های طبقه بندیInertial sensors - سنسورهای اینرسیConvolutional neural networks - شبکه عصبی همجوشیAccelerometer - شتاب سنجTarget recognition - شناخت هدفSupport vector machines - ماشین بردار پشتیبانیSignal processing - پردازش سیگنالGyroscope - ژیروسکوپ
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Here, we present IDNet, a user authentication framework from smartphone-acquired motion signals. Its goal is to recognize a target user from their way of walking, using the accelerometer and gyroscope (inertial) signals provided by a commercial smartphone worn in the front pocket of the user's trousers. IDNet features several innovations including: (i) a robust and smartphone-orientation-independent walking cycle extraction block, (ii) a novel feature extractor based on convolutional neural networks, (iii) a one-class support vector machine to classify walking cycles, and the coherent integration of these into (iv) a multi-stage authentication technique. IDNet is the first system that exploits a deep learning approach as universal feature extractors for gait recognition, and that combines classification results from subsequent walking cycles into a multi-stage decision making framework. Experimental results show the superiority of our approach against state-of-the-art techniques, leading to misclassification rates (either false negatives or positives) smaller than 0.15% with fewer than five walking cycles. Design choices are discussed and motivated throughout, assessing their impact on the user authentication performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 74, February 2018, Pages 25-37
Journal: Pattern Recognition - Volume 74, February 2018, Pages 25-37
نویسندگان
Matteo Gadaleta, Michele Rossi,