کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969535 | 1449976 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Computer-aided diagnosis of mammographic masses based on a supervised content-based image retrieval approach
ترجمه فارسی عنوان
تشخیص کامپیوتری از توده های ماموگرافی بر اساس یک روش بازیابی تصویر مبتنی بر محتوا تحت نظارت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
In this work, the incorporation of content-based image retrieval (CBIR) into computer aided diagnosis (CADx) is investigated, in order to contribute to the decision-making process of radiologists in the characterization of mammographic masses. The proposed scheme comprises two stages: A margin-specific supervised CBIR stage that retrieves images from reference cases along with a decision stage that is based on the retrieved items. The feature set utilized exploits state-of-the-art features along with a newly proposed texture descriptor, namely mHOG, targeted to capturing margin and core specific mass properties. Performance evaluation considers the CBIR and diagnosis stages separately and is addressed by using standard measures on an enhanced version of the widely adopted digital database for screening mammography (DDSM). The proposed scheme achieved improved performance of CADx of masses in X-ray mammography experimentally compared to the state-of-the-art.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 71, November 2017, Pages 106-117
Journal: Pattern Recognition - Volume 71, November 2017, Pages 106-117
نویسندگان
Lazaros Tsochatzidis, Konstantinos Zagoris, Nikolaos Arikidis, Anna Karahaliou, Lena Costaridou, Ioannis Pratikakis,