کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969546 | 1449976 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
GIR-based ensemble sampling approaches for imbalanced learning
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents two adaptive ensemble sampling approaches for imbalanced learning: one is the undersampling-based approach, and the other one is the oversampling-based approach, with the objectives of bias reduction and adaptive learning. Both of these two approaches are based on a novel class imbalance metric, termed generalized imbalance ratio (GIR), instead of the conventional sample size ratio. Specifically, these two sampling-based approaches adaptively split the imbalanced learning problem into multiple balanced learning subproblems in a probabilistic way, which forces the classifiers trained in the subproblems focus on those difficult to learn samples. In each subproblem, several weak classifiers are trained in a boosting manner. A final stronger classifier is further built by combining all these weak classifiers in a bagging manner. Extensive experiments are conducted on real-life UCI imbalanced data sets to evaluate the performance of the proposed methods. The superior performance demonstrates the effectiveness of the proposed methods and indicates wide potential applications in data mining.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 71, November 2017, Pages 306-319
Journal: Pattern Recognition - Volume 71, November 2017, Pages 306-319
نویسندگان
Bo Tang, Haibo He,