کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4969611 1449975 2017 38 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Synthetic minority oversampling technique for multiclass imbalance problems
ترجمه فارسی عنوان
تکنیک غربالگری اقلیتی مصنوعی برای مشکلات عدم تعادل چندکلاس
کلمات کلیدی
مشکلات عدم تعادل چند درجه ای، بیشینه سازی اقلیت مصنوعی، بیش از تعمیم، جهت همسایه،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Multiclass imbalance data learning has attracted increasing interests from the research community. Unfortunately, existing oversampling solutions, when facing this more challenging problem as compared to two-class imbalance case, have shown their respective deficiencies such as causing serious over generalization or not actively improving the class imbalance in data space. We propose a k-nearest neighbors (k-NN)-based synthetic minority oversampling algorithm, termed SMOM, to handle multiclass imbalance problems. Different from previous k-NN-based oversampling algorithms, where for any original minority instance the synthetic instances are randomly generated in the directions of its k-nearest neighbors, SMOM assigns a selection weight to each neighbor direction. The neighbor directions that can produce serious over generalization will be given small selection weights. This way, SMOM forms a mechanism of avoiding over generalization as the safer neighbor directions are more likely to be selected to yield the synthetic instances. Owing to this, SMOM can aggressively explore the regions of minority classes by configuring a high value for parameter k, but do not result in severe over generalization. Extensive experiments using 27 real-world data sets demonstrate the effectiveness of our algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 72, December 2017, Pages 327-340
نویسندگان
, , ,