کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4969612 1449975 2017 42 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Low-rank double dictionary learning from corrupted data for robust image classification
ترجمه فارسی عنوان
یادگیری دیکشنری دوگانه از اطلاعات خراب شده برای طبقه بندی تصویر قوی
کلمات کلیدی
یادگیری فرهنگ لغت درجه پایین فرهنگ لغت خاص کلاس فرهنگ لغت مشترک کلاس طبقه بندی عکس، نمونه های آموزشی خراب شده نیرومندی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
In this paper, we propose a novel low-rank double dictionary learning (LRD2L) method for robust image classification tasks, in which the training and testing samples are both corrupted. Unlike traditional dictionary learning methods, LRD2L simultaneously learns three components from corrupted training data: 1) a low-rank class-specific sub-dictionary for each class to capture the most discriminative class-specific features of each class, 2) a low-rank class-shared dictionary which models the common patterns shared in the data of different classes, and 3) a sparse error term to model the noise in data. Through low-rank class-shared dictionary and noise term, the proposed method can effectively separate the corruptions and noise in training samples from creating low-rank class-specific sub-dictionaries, which are employed for correctly reconstructing and classifying testing images. Comparative experiments are conducted on three public available databases. Experimental results are encouraging, demonstrating the effectiveness of the proposed method and its superiority in performance over the state-of-the-art dictionary learning methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 72, December 2017, Pages 419-432
نویسندگان
, , ,