کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969618 | 1449975 | 2017 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fusing disparate object signatures for salient object detection in video
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present a novel spatiotemporal saliency model for object detection in videos. In contrast to previous methods focusing on exploiting or incorporating different saliency cues, the proposed method aims to use object signatures which can be identified by any kinds of object segmentation methods. We integrate two distinctive saliency maps, which are respectively computed from object proposals of an appearance-dominated method and a motion-dominated algorithm, to obtain a refined spatiotemporal saliency maps. This enables the method to achieve good robustness and precision in identifying salient objects in videos under various challenging conditions. First, an improved appearance-based and a modified motion-based segmentation approaches are separately utilized to extract two kinds of candidate foreground objects. Second, with these captured object signatures, we design a new approach to filter the extracted noisy object pixels and label foreground superpixels in each object signature channel. Third, we introduce a foreground connectivity saliency measure to compute two types of saliency maps, from which an adaptive fusion strategy is exploited to obtain the final spatiotemporal saliency maps for salient object detection in a video. Both quantitative and qualitative experiments on several challenging video benchmarks demonstrate that the proposed method outperforms existing state-of-the-art approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 72, December 2017, Pages 285-299
Journal: Pattern Recognition - Volume 72, December 2017, Pages 285-299
نویسندگان
Zhigang Tu, Zuwei Guo, Wei Xie, Mengjia Yan, Remco C. Veltkamp, Baoxin Li, Junsong Yuan,