کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969628 | 1449975 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-modal uniform deep learning for RGB-D person re-identification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we propose a multi-model uniform deep learning (MMUDL) method for RGB-D person re-identification. Unlike most existing person re-identification methods which only use RGB images, our approach recognizes people from RGB-D images so that more information such as anthropometric measures and body shapes can be exploited for re-identification. In order to exploit useful information from depth images, we use the deep network to extract efficient anthropometric features from processed depth images which also have three channels. Moreover, we design a multi-modal fusion layer to combine these features extracted from both depth images and RGB images through the network with a uniform latent variable which is robust to noise, and optimize the fusion layer with two CNN networks jointly. Experimental results on two RGB-D person re-identification datasets are presented to show the efficiency of our proposed approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 72, December 2017, Pages 446-457
Journal: Pattern Recognition - Volume 72, December 2017, Pages 446-457
نویسندگان
Liangliang Ren, Jiwen Lu, Jianjiang Feng, Jie Zhou,