کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4969647 1449982 2017 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computation of heterogeneous object co-embeddings from relational measurements
ترجمه فارسی عنوان
محاسبه همبستگی های جسم ناهمگن از اندازه گیری های ارتباطی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Dimensionality reduction and data embedding methods generate low dimensional representations of a single type of homogeneous data objects. In this work, we examine the problem of generating co-embeddings or pattern representations from two different types of objects within a joint common space of controlled dimensionality, where the only available information is assumed to be a set of pairwise relations or similarities between instances of the two groups. We propose a new method that models the embedding of each object type symmetrically to the other type, subject to flexible scale constraints and weighting parameters. The embedding generation relies on an efficient optimization dispatched using matrix decomposition, that is also extended to support multidimensional co-embeddings. We also propose a scheme of heuristically reducing the parameters of the model, and a simple way of measuring the conformity between the original object relations and the ones re-estimated from the co-embeddings, in order to achieve model selection by identifying the optimal model parameters with a simple search procedure. The capabilities of the proposed method are demonstrated with multiple synthetic and real-world datasets from the text mining domain. The experimental results and comparative analyses indicate that the proposed algorithm outperforms existing methods for co-embedding generation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 65, May 2017, Pages 146-163
نویسندگان
, , , ,