| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 4969671 | 1449978 | 2017 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Deep, dense and accurate 3D face correspondence for generating population specific deformable models
ترجمه فارسی عنوان
مکاتبات چهره واقعی، انعطاف پذیر و دقیق برای تولید مدل های قابل تعویض خاص جمعیت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
We present a multilinear algorithm to automatically establish dense point-to-point correspondence over an arbitrarily large number of population specific 3D faces across identities, facial expressions and poses. The algorithm is initialized with a subset of anthropometric landmarks detected by our proposed Deep Landmark Identification Network which is trained on synthetic images. The landmarks are used to segment the 3D face into Voronoi regions by evolving geodesic level set curves. Exploiting the intrinsic features of these regions, we extract discriminative keypoints on the facial manifold to elastically match the regions across faces for establishing dense correspondence. Finally, we generate a Region based 3D Deformable Model which is fitted to unseen faces to transfer the correspondences. We evaluate our algorithm on the tasks of facial landmark detection and recognition using two benchmark datasets. Comparison with thirteen state-of-the-art techniques shows the efficacy of our algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 69, September 2017, Pages 238-250
Journal: Pattern Recognition - Volume 69, September 2017, Pages 238-250
نویسندگان
Syed Zulqarnain Gilani, Ajmal Mian, Peter Eastwood,
