کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969708 | 1449981 | 2017 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Diagnosing deep learning models for high accuracy age estimation from a single image
ترجمه فارسی عنوان
تشخیص مدل های یادگیری عمیق برای تخمین سن دقیق از یک تصویر واحد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ارزیابی سن، یادگیری عمیق، یادگیری چند کاره
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Given a face image, the problem of age estimation is to predict the actual age from the visual appearance of the face. In this work, we investigate this problem by means of the deep learning techniques. We comprehensively diagnose the training and evaluating procedures of the deep learning models for age estimation on two of the largest datasets. Our diagnosis includes three different kinds of formulations for the age estimation problem using five most representative loss functions, as well as three different architectures to incorporate multi-task learning with race and gender classification. We start our diagnoses process from a simple baseline architecture from previous work. With appropriate problem formulation and loss function, we obtain state-of-the-art performance with the simple baseline architecture. By further incorporating our newly proposed deep multi-task learning architecture, the age estimation performance is further improved with high-accuracy race and gender classification results obtained simultaneously. With all the insights gained from the diagnosing process, we finally build a deep multi-task age estimation model which obtains a MAE of 2.96 on the Morph II dataset and 5.75 on the WebFace dataset, both of which improve previous best results by a large margin.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 66, June 2017, Pages 106-116
Journal: Pattern Recognition - Volume 66, June 2017, Pages 106-116
نویسندگان
Junliang Xing, Kai Li, Weiming Hu, Chunfeng Yuan, Haibin Ling,