کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969720 | 1449981 | 2017 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Diversity induced matrix decomposition model for salient object detection
ترجمه فارسی عنوان
مدل تقسیم ماتریس برای تشخیص شیء الگوی تنوع
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص سلامت، تنوع طرز تأسیس، تجزیه ماتریس، رتبه پایین گروه اسپارتی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Over the past decade, salient object detection has attracted a lot of interests in computer vision. Although many models have been proposed to detect the salient object in an arbitrary image, this problem is still plagued with complex backgrounds and scattered objects. To address this issue, in this paper, we explore the information in cross features via a diversity-induced multi-view regularization under the Hilbert-Schmidt Independence Criterion (HSIC). Based on the diversity term, a new matrix decomposition based model is proposed for salient object detection. Furthermore, S1/2 regularizer is introduced to constrain the background part. This regularizer will make the background much cleaner in the saliency map. A group sparsity induced norm is imposed on the salient part in order to involve the potential spatial relationships of image patches. Our method is solved through an augmented Lagrange multipliers method, and high-level priors are also integrated to boost the performance. Experiments on the four widely used datasets show that our method outperforms the state-of-the-art models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 66, June 2017, Pages 253-267
Journal: Pattern Recognition - Volume 66, June 2017, Pages 253-267
نویسندگان
Xiaoli Sun, ZhiXiang He, Chen Xu, Xiujun Zhang, Wenbin Zou, George Baciu,