کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969774 | 1449980 | 2017 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Minkowski central partition as a pointer to a suitable distance exponent and consensus partitioning
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The Minkowski weighted K-means (MWK-means) is a recently developed clustering algorithm capable of computing feature weights. The cluster-specific weights in MWK-means follow the intuitive idea that a feature with low variance should have a greater weight than a feature with high variance. The final clustering found by this algorithm depends on the selection of the Minkowski distance exponent. This paper explores the possibility of using the central Minkowski partition in the ensemble of all Minkowski partitions for selecting an optimal value of the Minkowski exponent. The central Minkowski partition appears to be also a good consensus partition. Furthermore, we discovered some striking correlation results between the Minkowski profile, defined as a mapping of the Minkowski exponent values into the average similarity values of the optimal Minkowski partitions, and the Adjusted Rand Index vectors resulting from the comparison of the obtained partitions to the ground truth. Our findings were confirmed by a series of computational experiments involving synthetic Gaussian clusters and real-world data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 67, July 2017, Pages 62-72
Journal: Pattern Recognition - Volume 67, July 2017, Pages 62-72
نویسندگان
Renato Cordeiro de Amorim, Andrei Shestakov, Boris Mirkin, Vladimir Makarenkov,