کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969836 | 1449984 | 2017 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Nonlinear feature transformation and deep fusion for Alzheimer's Disease staging analysis
ترجمه فارسی عنوان
تحول ویژگی غیرخطی و همجوشی عمیق برای تجزیه و تحلیل وضعیت بیماری آلزایمر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
In this study, we develop a novel nonlinear metric learning method to improve biomarker identification for Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI). Formulated under a constrained optimization framework, the proposed method learns a smooth nonlinear feature space transformation that makes the mapped data more linearly separable for SVMs. The thin-plate spline (TPS) is chosen as the geometric model due to its remarkable versatility and representation power in generating sophisticated yet smooth deformations. In addition, a deep network based feature fusion strategy through stacked denoising sparse auto-encoder (DSAE) is adopted to integrate cross-sectional and longitudinal features estimated from MR brain images. Using the ADNI dataset, we evaluate the effectiveness of the proposed feature transformation and feature fusion strategies and demonstrate the improvements over the state-of-the-art solutions within the same category.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 63, March 2017, Pages 487-498
Journal: Pattern Recognition - Volume 63, March 2017, Pages 487-498
نویسندگان
Bibo Shi, Yani Chen, Pin Zhang, Charles D. Smith, Jundong Liu, For the Alzheimer's Disease Neuroimaging Initiative For the Alzheimer's Disease Neuroimaging Initiative,