کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969842 | 1449984 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Automatic cystocele severity grading in transperineal ultrasound by random forest regression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Cystocele is a woman disease that bladder herniates into vagina. Women with cystocele may have problem in urinating and higher risk of bladder infection. The treatment of cystocele highly depends on the severity. The cystocele severity is usually evaluated with the manual transperineal ultrasound measurement for the maximal distance between the bladder and the lower tip of symphysis pubis in the Valsalva maneuver. To improve the efficiency of the measurement, we propose a fully automatic scheme that can measure the distance between the two anatomic structures in each ultrasound image. The whole measurement scheme is realized with a two-phase random forest regression to infer the locations of the two structures in the images for the support of distance measurement. The experimental results suggest automatic distance measurements and the final grading by our random forest regression method are comparable to the measurements and grading scores from three medical doctors, and thus corroborate the efficacy of our method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 63, March 2017, Pages 551-560
Journal: Pattern Recognition - Volume 63, March 2017, Pages 551-560
نویسندگان
Dong Ni, Xing Ji, Min Wu, Wenlei Wang, Xiaoshuang Deng, Zhongyi Hu, Tianfu Wang, Dinggang Shen, Jie-Zhi Cheng, Huifang Wang,