کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969850 | 1449984 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Subject-adaptive Integration of Multiple SICE Brain Networks with Different Sparsity
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we propose a subject-adaptive method to integrate multiple SICE networks as a unified representation for classification. The integration weight is learned adaptively for each subject in order to endow the method with the flexibility in dealing with subject variations. Furthermore, to respect the manifold geometry of SICE networks, Stein kernel is employed to embed the manifold structure into a kernel-induced feature space, which allows a linear integration of SICE networks to be designed. The optimization of the integration weight and the classification of the integrated networks are performed via a sparse representation framework. Through our method, we provide a unified and effective network representation that is transparent to the sparsity level of SICE networks, and can be readily utilized for further medical analysis. Experimental study on ADHD and ADNI data sets demonstrates that the proposed integration method achieves notable improvement of classification performance in comparison with methods using a single sparsity level of SICE networks and other commonly used integration methods, such as Multiple Kernel Learning.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 63, March 2017, Pages 642-652
Journal: Pattern Recognition - Volume 63, March 2017, Pages 642-652
نویسندگان
Jianjia Zhang, Luping Zhou, Lei Wang,