کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4969898 1449983 2017 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Optic disc segmentation based on variational model with multiple energies
ترجمه فارسی عنوان
تقسیم دیسک نوری بر اساس مدل تغییری با انرژی های مختلف
کلمات کلیدی
بیماری های شبکیه تقسیم دیسک نوری، محلی سازی دیسک نوری، برنامه نویسی انعطاف پذیر، مدل متغیر
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Accurate and reliable optic disc (OD) segmentation is important for retinal image analysis and retinal disease screening. This paper presents a novel method to automatically segment OD in fundus images based on variational model with multiple energies. Firstly, a sparse coding based technique is designed to localize the OD center, based on which an initial boundary curve is then estimated by a circular Hough transform. Next, OD segmentation is regarded as an energy minimization problem, and a variational model integrating three energy terms is proposed to evolve the curve to the OD boundary. In the proposed model, the first term, named phase-based boundary energy, is designed to attract the evolution curve to the OD boundary, even the one with low contrast; the second term, named PCA-based shape energy, constraints the evolution curve to a common OD shape, which can suppress the negative effect of bright interferences, e.g., the bright lesions and myelinated nerve fibers, in OD segmentation; the last one is the region energy, which drives the evolution curve to the boundary of the homogeneous regions and hence improve the robustness of the model to the noises boundary and the initial position of evolution curve. The proposed OD segmentation method is evaluated on three public available databases, i.e., the MESSIDOR, ONHSD and DRIONS databases, and the experimental results demonstrate that the proposed method outperforms the state-of-the art techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 64, April 2017, Pages 226-235
نویسندگان
, , ,