کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4969906 1449983 2017 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Decision pyramid classifier for face recognition under complex variations using single sample per person
ترجمه فارسی عنوان
تصمیم گیرنده هرم طبقه بندی برای تشخیص چهره تحت تغییرات پیچیده با استفاده از یک نمونه در هر نفر
کلمات کلیدی
تنها نمونه در هر شخص، تشخیص چهره، تصمیم گیری طبقه بندی هرمی، پارتیشن بندی تصویر، استخراج ویژگی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
The single sample per person (SSPP) problem is a great challenge for real-world face recognition systems. In an SSPP scenario, there is always a large gap between a normal sample enrolled in the gallery set and the non-ideal probe sample. In this paper, we propose a new face recognition method, called decision pyramid classifier (DPC), to solve SSPP problems with large appearance variations (e.g., illumination, expression and partly occlusions). Unlike the conventional image partitioning methods, the proposed DPC is a nonparametric method which does not require a training process. In the data preprocessing phase of DPC, we divide each training image into multiple non-overlapping local blocks and respectively extract features from each block to generate the training feature set. For an unseen image, DPC requires obtaining its features using the exactly same preprocessing. By constructing a decision pyramid, we predict the final category of the unseen face image. Experimental results show that DPC possesses higher recognition rate than other related face recognition methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 64, April 2017, Pages 305-313
نویسندگان
, , , , ,