کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4969927 1449983 2017 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hierarchically Supervised Deconvolutional Network for Semantic Video Segmentation
ترجمه فارسی عنوان
سلسله مراتب تحت نظارت شبکه مخالفتی برای تقسیم بندی ویدئو معنایی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Semantic video segmentation is a challenging task of fine-grained semantic understanding of video data. In this paper, we present a jointly trained deep learning framework to make the best use of spatial and temporal information for semantic video segmentation. Along the spatial dimension, a hierarchically supervised deconvolutional neural network (HDCNN) is proposed to conduct pixel-wise semantic interpretation for single video frames. HDCNN is constructed with convolutional layers in VGG-net and their mirrored deconvolutional structure, where all fully connected layers are removed. And hierarchical classification layers are added to multi-scale deconvolutional features to introduce more contextual information for pixel-wise semantic interpretation. Besides, a coarse-to-fine training strategy is adopted to enhance the performance of foreground object segmentation in videos. Along the temporal dimension, we introduce Transition Layers upon the structure of HDCNN to make the pixel-wise label prediction consist with adjacent pixels across space and time domains. The learning process of the Transition Layers can be implemented as a set of extra convolutional calculations connected with HDCNN. These two parts are jointly trained as a unified deep network in our approach. Thorough evaluations are performed on two challenging video datasets, i.e., CamVid and GATECH. Our approach achieves state-of-the-art performance on both of the two datasets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 64, April 2017, Pages 437-445
نویسندگان
, , , , , ,