کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4969934 1449988 2016 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive noise dictionary construction via IRRPCA for face recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Adaptive noise dictionary construction via IRRPCA for face recognition
چکیده انگلیسی
Recently, regression analysis has become a popular method for face recognition. Various robust regression methods have been proposed to handle with different recognition tasks. In this paper, we attempt to achieve this goal by the strategy of adding an adaptive noise dictionary (AND) to the training samples. In contrast to the previous methods, the noise dictionary (ND) is adaptive to different kinds of noise and extracted automatically. To get an effective noise dictionary, the Iteratively Reweighted Robust Principal Component Analysis (IRRPCA) is proposed. A corresponding classifier based on linear regression is presented for recognition. As this adaptive noise dictionary can describe the noise distribution of testing samples, it is robust to various kinds of noise and applicable for recognition tasks with occluded or corrupted images. This method is also extended to deal with misaligned images. Experiments are conducted on AR, Yale B, CMU PIE, CMU Multi-Pie, LFW and Pubfig databases to verify the robustness of our method to variations in occlusion, corruption, illumination, misalignment, etc.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition - Volume 59, November 2016, Pages 26-41
نویسندگان
, , , , , , ,