کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4969983 | 1450029 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bayesian belief network for positive unlabeled learning with uncertainty
ترجمه فارسی عنوان
شبکه اعتقاد بیزی برای یادگیری مثبت بدون برچسب با عدم قطعیت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
The current state-of-art for tackling the problem of classification of static uncertain data under PU learning (Positive Unlabeled Learning) scenario, is UPNB. It is based on the Bayesian assumption, which does not hold for real-life applications, and hence it may depress the classification performance of UPNB. In this paper, we propose UPTAN (Uncertain Positive Tree Augmented Naive Bayes), a Bayesian network algorithm, so as to utilize the dependence information among uncertain attributes for classification. We propose uncertain conditional mutual information (UCMI) for measuring the mutual information between uncertain attributes, and then use it to learn the tree structure of Bayesian network. Furthermore, we give our approach for estimating the parameters of the Bayesian network for uncertain data without negative training examples. Our experiments on 20 UCI datasets show that UPTAN has excellent classification performance, with average F1 being 0.8257, which outperforms UPNB by 3.73%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 90, 15 April 2017, Pages 28-35
Journal: Pattern Recognition Letters - Volume 90, 15 April 2017, Pages 28-35
نویسندگان
Hongxiao Gan, Yang Zhang, Qun Song,