کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4970146 | 1450028 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-patch deep sparse histograms for iris recognition in visible spectrum using collaborative subspace for robust verification
ترجمه فارسی عنوان
هیستوگرام های پراکنده عمیق چندگانه برای تشخیص عنبیه در طیف قابل مشاهده با استفاده از زیرمجموعه مشترک برای تایید قوی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص قابل مشاهده قابل انفجار، فیلترینگ ضعیف عمیق، شناسایی عنبیه گوشی هوشمند، زیرمجموعه مشترک ایریس نمونه تک،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
The challenge of recognizing iris in visible spectrum images captured using smartphone stems from heavily degraded data (due to reflection, partial closure of eyes, pupil dilation due to light) where the iris texture is either not visible or visible to very low extent. In order to perform reliable verification, the set of extracted features should be robust and unique to obtain high similarity scores between different samples of same subject while obtaining high dissimilarity score between samples of different subjects. In this work, we propose multi-patch deep features using deep sparse filters to obtain robust features for reliable iris recognition. Further, we also propose to represent them in a collaborative subspace to perform classification via maximized likelihood, even under single sample enrolment. Through the set of extensive experiments on MICHE-I iris dataset, we demonstrate the robustness of newly proposed scheme which achieves high verification rate (GMR > 95%) with low Equal Error Rate (EER < 2%). Further, the robustness of proposed feature representation is reiterated by employing simple distance measures which has outperformed the state-of-art techniques. Additionally, the scheme is tested on the MICHE-II challenge evaluation dataset where the results are promising with GMR=100% on limited sub-corpus of iPhone data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 91, 1 May 2017, Pages 27-36
Journal: Pattern Recognition Letters - Volume 91, 1 May 2017, Pages 27-36
نویسندگان
Kiran B. Raja, R. Raghavendra, Sushma Venkatesh, Christoph Busch,