کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4970147 1450028 2017 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kurtosis and skewness at pixel level as input for SOM networks to iris recognition on mobile devices
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Kurtosis and skewness at pixel level as input for SOM networks to iris recognition on mobile devices
چکیده انگلیسی
The increasing popularity of smartphones amongst the population laid the basis for a wide range of applications aimed at security and privacy protection. Very modern mobile devices have recently demonstrated the feasibility of using a camera sensor to access the system without typing any alphanumerical password. In this work, we present a method that implements iris recognition in the visible spectrum through unsupervised learning by means of Self Organizing Maps (SOM). The proposed method uses a SOM network to cluster iris features at pixel level. The discriminative feature map is obtained by using RGB data of the iris combined with the statistical descriptors of kurtosis and skewness. An experimental analysis on MICHE-I and UBIRISv1 datasets demonstrates the strengths and weaknesses of the algorithm, which has been specifically designed to require low processing power in compliance with the limited capability of common mobile devices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 91, 1 May 2017, Pages 37-43
نویسندگان
, , , ,