کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4970158 | 1450030 | 2017 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Optimization approach for feature selection in multi-label classification
ترجمه فارسی عنوان
رویکرد بهینه سازی برای انتخاب ویژگی در طبقه بندی چند لایحه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
چکیده انگلیسی
Nowadays, many data sources that include multi-label learning and multi-label classification have emerged in recent application areas. To achieve high classification accuracy, the multi-label feature selection method has received much attention because its accuracy can be significantly improved by selecting important features. In previous multi-label feature selection studies, a score function was designed based on the measure of the dependency between features and labels. However, identifying the optimal feature subset is an impractical task because all possible feature subsets are 2N, where N is the number of total features in a given dataset. Thus, the conventional methods utilized a greedy search approach that can be stuck in local optima. To circumvent the drawback of the greedy approaches, we design a score function based on mutual information and present a numerical optimization approach to avoid being stuck in the local optima. The experimental results demonstrate the superiority of the proposed multi-label feature selection method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 89, 1 April 2017, Pages 25-30
Journal: Pattern Recognition Letters - Volume 89, 1 April 2017, Pages 25-30
نویسندگان
Hyunki Lim, Jaesung Lee, Dae-Won Kim,