کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4970163 | 1450030 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Toward high-performance online HCCR: A CNN approach with DropDistortion, path signature and spatial stochastic max-pooling
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents an investigation of several techniques that increase the accuracy of online handwritten Chinese character recognition (HCCR). We propose a new training strategy named DropDistortion to train a deep convolutional neural network (DCNN) with distorted samples. DropDistortion gradually lowers the degree of character distortion during training, which allows the DCNN to better generalize. Path signature is used to extract effective features for online characters. Further improvement is achieved by employing spatial stochastic max-pooling as a method of feature map distortion and model averaging. Experiments were carried out on three publicly available datasets, namely CASIA-OLHWDB 1.0, CASIA-OLHWDB 1.1, and the ICDAR2013 online HCCR competition dataset. The proposed techniques yield state-of-the-art recognition accuracies of 97.67%, 97.30%, and 97.99%, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 89, 1 April 2017, Pages 60-66
Journal: Pattern Recognition Letters - Volume 89, 1 April 2017, Pages 60-66
نویسندگان
Songxuan Lai, Lianwen Jin, Weixin Yang,