کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4970170 1450031 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Empirical comparison of cross-validation and internal metrics for tuning SVM hyperparameters
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
Empirical comparison of cross-validation and internal metrics for tuning SVM hyperparameters
چکیده انگلیسی
Hyperparameter tuning is a mandatory step for building a support vector machine classifier. In this work, we study some methods based on metrics of the training set itself, and not the performance of the classifier on a different test set - the usual cross-validation approach. We compare cross-validation (5-fold) with Xi-alpha, radius-margin bound, generalized approximate cross validation, maximum discrepancy and distance between two classes on 110 public binary data sets. Cross validation is the method that resulted in the best selection of the hyper-parameters, but it is also the method with one of the highest execution time. Distance between two classes (DBTC) is the fastest and the second best ranked method. We discuss that DBTC is a reasonable alternative to cross validation when training/hyperparameter-selection times are an issue and that the loss in accuracy when using DBTC is reasonably small.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 88, 1 March 2017, Pages 6-11
نویسندگان
, ,