کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4970212 | 1365304 | 2016 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
GOOD: A global orthographic object descriptor for 3D object recognition and manipulation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Object representation is one of the most challenging tasks in robotics because it must provide reliable information in real-time to enable the robot to physically interact with the objects in its environment. To ensure robustness, a global object descriptor must be computed based on a unique and repeatable object reference frame. Moreover, the descriptor should contain enough information enabling to recognize the same or similar objects seen from different perspectives. This paper presents a new object descriptor named Global Orthographic Object Descriptor (GOOD) designed to be robust, descriptive and efficient to compute and use. We propose a novel sign disambiguation method, for computing a unique reference frame from the eigenvectors obtained through Principal Component Analysis of the point cloud of the target object view captured by a 3D sensor. Three principal orthographic projections and their distribution matrices are computed by exploiting the object reference frame. The descriptor is finally obtained by concatenating the distribution matrices in a sequence determined by entropy and variance features of the projections. Experimental results show that the overall classification performance obtained with GOOD is comparable to the best performances obtained with the state-of-the-art descriptors. Concerning memory and computation time, GOOD clearly outperforms the other descriptors. Therefore, GOOD is especially suited for real-time applications. The estimated object's pose is precise enough for real-time object manipulation tasks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 83, Part 3, 1 November 2016, Pages 312-320
Journal: Pattern Recognition Letters - Volume 83, Part 3, 1 November 2016, Pages 312-320
نویسندگان
S. Hamidreza Kasaei, Ana Maria Tomé, LuÃs Seabra Lopes, Miguel Oliveira,