کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4970223 1365304 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
BESAC: Binary External Symmetry Axis Constellation for unconstrained handwritten character recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
BESAC: Binary External Symmetry Axis Constellation for unconstrained handwritten character recognition
چکیده انگلیسی
We propose a novel perception driven feature extraction called binary external symmetry axis constellation (BESAC) and a fast Boolean matching character recognition technique. A constellation model using a set of external symmetry axes which are perceptually significant can uniquely represent a handwritten character pattern. This model generates two histograms of orientations that are binary coded and concatenated to produce the proposed BESAC feature. A two stage classification strategy is adopted where a parallel Hamming Distance dissimilarity matching is performed on the extracted BESAC feature to achieve fast recognition along with perceptual closure part detection on look-alike characters. We adopt a 10-fold cross validation strategy to evaluate the performance of our algorithm on two major Indian languages, Bangla and Odia with four benchmark databases (ISI Kolkata Bangla numeral, ISI Kolkata Odia and IITBBS Odia numeral, and a newly created IITBBS Odia character database). The average time for classifying an unknown handwritten character is reported to be significantly less than the existing methods. The average recognition accuracy using the proposed approach is proved to outperform the state-of-the-art accuracy results on ISI Kolkata Odia numeral database (99.35%), IITBBS Odia numeral (98.9%), ISI Kolkata Bangla numeral database (99.48%) and IITBBS Odia character (95.01%) database.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 83, Part 3, 1 November 2016, Pages 413-422
نویسندگان
, , ,