کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4970253 1365306 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
HEp-2 cell classification: The role of Gaussian Scale Space Theory as a pre-processing approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر چشم انداز کامپیوتر و تشخیص الگو
پیش نمایش صفحه اول مقاله
HEp-2 cell classification: The role of Gaussian Scale Space Theory as a pre-processing approach
چکیده انگلیسی
Indirect Immunofluorescence Imaging of Human Epithelial Type 2 (HEp-2) cells is an effective way to identify the presence of Anti-Nuclear Antibody (ANA). Most existing works on HEp-2 cell classification mainly focus on feature extraction, feature encoding and classifier design. Very few efforts have been devoted to study the importance of the pre-processing techniques. In this paper, we analyze the importance of the pre-processing, and investigate the role of Gaussian Scale Space (GSS) theory as a pre-processing approach for the HEp-2 cell classification task. We validate the GSS pre-processing under the Local Binary Pattern (LBP) and the Bag-of-Words (BoW) frameworks. Under the BoW framework, the introduced pre-processing approach, using only one Local Orientation Adaptive Descriptor (LOAD), achieved superior performance on the Executable Thematic on Pattern Recognition Techniques for Indirect Immunofluorescence (ET-PRT-IIF) image analysis. Our system, using only one feature, outperformed the winner of the ICPR 2014 contest that combined four types of features. Meanwhile, the proposed pre-processing method is not restricted to this work; it can be generalized to many existing works.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pattern Recognition Letters - Volume 82, Part 1, 15 October 2016, Pages 36-43
نویسندگان
, , , ,