کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
497047 862875 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An agent model for rough classifiers
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
An agent model for rough classifiers
چکیده انگلیسی

This paper proposes a new agent-based approach in rough set classification theory. In data mining, the rough set technique is one classification technique. It generates rules from a large database and has mechanisms to handle noise and uncertainty in data. However, producing a rough classification model or rough classifier is computationally expensive, especially in its reduct computation phase: this is an NP-hard problem. These problems have brought about the generation of large amount of rules and high processing time. We solve these problems by embedding an agent-based algorithm within the rough modelling framework. In this study, the classifiers are based on creating agents within the main modelling processes such as reduct computation, rules generation and attribute projections. Four main agents are introduced: the interaction agent, weighted agent, reduction agent and default agent. We propose a heuristic for the default agent to control its searching activity. Experiments show that the proposed method significantly reduces the running time and the number of rules while maintaining the same classification accuracy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 11, Issue 2, March 2011, Pages 2239–2245
نویسندگان
, , , , ,