کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
497054 862875 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
GMM based SPECT image classification for the diagnosis of Alzheimer's disease
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
GMM based SPECT image classification for the diagnosis of Alzheimer's disease
چکیده انگلیسی
We present a novel classification method of SPECT images based on Gaussian mixture models (GMM) for the diagnosis of Alzheimer's disease. The aims of the model-based approach for density estimation is to automatically select regions of interest (ROIs) and to effectively reduce the dimensionality of the problem. The resulting Gaussians are constructed according to a maximum likelihood criterion employing the Expectation Maximization (EM) algorithm. By considering only the intensity levels inside the Gaussians, the resulting feature space has a significantly reduced dimensionality with respect to former approaches using the voxel intensities directly as features (VAF). With this feature extraction method one relieves the effects of the so-called small sample size problem and nonlinear classifiers may be used to distinguish between the brain images of normal and Alzheimer patients. Our results show that for various classifiers the GMM-based method yields higher accuracy rates than the classification considering all voxel values.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 11, Issue 2, March 2011, Pages 2313-2325
نویسندگان
, , , , ,