کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
497083 862876 2007 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive genetic algorithms applied to dynamic multiobjective problems
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Adaptive genetic algorithms applied to dynamic multiobjective problems
چکیده انگلیسی

This paper describes an adaptive genetic algorithm (AGA) with dynamic fitness function for multiobjective problems (MOPs) in a dynamic environment. In order to see performance of the algorithm, AGA was applied to two kinds of MOPs. Firstly, the algorithm was used to find an optimal force allocation for a combat simulation. The paper discusses four objectives that need to be optimized and presents a fuzzy inference system that forms an aggregation of the four objectives. A second fuzzy inference system is used to control the crossover and mutation rates based on statistics of the aggregate fitness. In addition to dynamic force allocation optimization problem, a simple example of a dynamic multiobjective optimization problem taken from Farina et al. [M. Farina, K. Deb, P. Amato, Dynamic multiobjective optimization problems: test cases, approximations, and applications, IEEE Trans. Evol. Comput. 8 (5) (2004) 425–442] is presented and solved with the proposed algorithm. The results obtained here indicate that performance of the fuzzy-augmented GA is better than a standard GA method in terms of improvement of convergence to solutions of dynamic MOPs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 7, Issue 3, June 2007, Pages 791–799
نویسندگان
,