کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
497128 862877 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mining search engine query logs for social filtering-based query recommendation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Mining search engine query logs for social filtering-based query recommendation
چکیده انگلیسی

This paper presents a simple and intuitive method for mining search engine query logs for fast social filtering, where searchers are provided with dynamic query recommendations on a large-scale industrial-strength search engine. We adopt a dynamic approach that is able to absorb new and recent trends in web usage trends on search engines, while forgetting outdated trends, thus adapting to dynamic changes in web user’s interests. In order to get well-rounded recommendations, we combine two methods: first, we model search engine users’ sequential search behavior, and interpret this consecutive search behavior as client-side query refinement, that should form the basis for the search engine’s own query refinement process. This query refinement process is exploited to learn useful information that helps generate related queries. Second, we combine this method with a traditional text or content based similarity method to compensate for the shortness of query sessions and sparsity of real query log data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 8, Issue 4, September 2008, Pages 1326–1334
نویسندگان
, ,