کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
497144 862877 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parameter determination of support vector machine and feature selection using simulated annealing approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Parameter determination of support vector machine and feature selection using simulated annealing approach
چکیده انگلیسی

Support vector machine (SVM) is a novel pattern classification method that is valuable in many applications. Kernel parameter setting in the SVM training process, along with the feature selection, significantly affects classification accuracy. The objective of this study is to obtain the better parameter values while also finding a subset of features that does not degrade the SVM classification accuracy. This study develops a simulated annealing (SA) approach for parameter determination and feature selection in the SVM, termed SA-SVM.To measure the proposed SA-SVM approach, several datasets in UCI machine learning repository are adopted to calculate the classification accuracy rate. The proposed approach was compared with grid search which is a conventional method of performing parameter setting, and various other methods. Experimental results indicate that the classification accuracy rates of the proposed approach exceed those of grid search and other approaches. The SA-SVM is thus useful for parameter determination and feature selection in the SVM.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 8, Issue 4, September 2008, Pages 1505–1512
نویسندگان
, , , ,