کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4972183 1365394 2017 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification of a Driver's cognitive workload levels using artificial neural network on ECG signals
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر تعامل انسان و کامپیوتر
پیش نمایش صفحه اول مقاله
Classification of a Driver's cognitive workload levels using artificial neural network on ECG signals
چکیده انگلیسی
An artificial neural network (ANN) model was developed in the present study to classify the level of a driver's cognitive workload based on electrocardiography (ECG). ECG signals were measured on 15 male participants while they performed a simulated driving task as a primary task with/without an N-back task as a secondary task. Three time-domain ECG measures (mean inter-beat interval (IBI), standard deviation of IBIs, and root mean squared difference of adjacent IBIs) and three frequencydomain ECG measures (power in low frequency, power in high frequency, and ratio of power in low and high frequencies) were calculated. To compensate for individual differences in heart response during the driving tasks, a three-step data processing procedure was performed to ECG signals of each participant: (1) selection of two most sensitive ECG measures, (2) definition of three (low, medium, and high) cognitive workload levels, and (3) normalization of the selected ECG measures. An ANN model was constructed using a feed-forward network and scaled conjugate gradient as a back-propagation learning rule. The accuracy of the ANN classification model was found satisfactory for learning data (95%) and testing data (82%).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Ergonomics - Volume 59, Part A, March 2017, Pages 326-332
نویسندگان
, , , , , , , ,