کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4972781 1451243 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unsupervised domain adaptation for early detection of drought stress in hyperspectral images
ترجمه فارسی عنوان
انطباق دامنه بدون نظارت برای تشخیص زودرس تنش خشکی در تصاویر هیپرسیترالی
کلمات کلیدی
سازگاری دامنه بدون نظارت، فراگیری ماشین، ماشین بردار پشتیبانی، طیف فوق العاده کشاورزی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
چکیده انگلیسی

Hyperspectral images can be used to uncover physiological processes in plants if interpreted properly. Machine Learning methods such as Support Vector Machines (SVM) and Random Forests have been applied to estimate development of biomass and detect and predict plant diseases and drought stress. One basic requirement of machine learning implies, that training and testing is done in the same domain and the same distribution. Different genotypes, environmental conditions, illumination and sensors violate this requirement in most practical circumstances. Here, we present an approach, which enables the detection of physiological processes by transferring the prior knowledge within an existing model into a related target domain, where no label information is available. We propose a two-step transformation of the target features, which enables a direct application of an existing model. The transformation is evaluated by an objective function including additional prior knowledge about classification and physiological processes in plants. We have applied the approach to three sets of hyperspectral images, which were acquired with different plant species in different environments observed with different sensors. It is shown, that a classification model, derived on one of the sets, delivers satisfying classification results on the transformed features of the other data sets. Furthermore, in all cases early non-invasive detection of drought stress was possible.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 131, September 2017, Pages 65-76
نویسندگان
, , , , , , ,