کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4972794 | 1451244 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Image jitter detection and compensation using a high-frequency angular displacement method for Yaogan-26 remote sensing satellite
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Satellite platform jitter is an important factor restricting the imaging quality of high-resolution (HR) optical satellite images. To address the critical issue of compensation for attitude jitter in HR images, this paper proposes a steady-state reimaging model using high-frequency angular displacement data to detect and compensate for the attitude jitter of HR images. The bidirectional Kalman filter and overall weighted smoothing method helps realizing information fusion of star sensor and angular displacement sensor and obtaining the high-frequency attitude for image jitter detection. Then, the steady reimaging model is used to correct the distorted image with geolocation consistency based on a rigorous geometric model. The Yaogan-26 remote sensing satellite's distorted panchromatic images of airports, targets and calibration fields affected by platform jitter were used to validate the effectiveness and accuracy of the proposed method. The compensation results show that the proposed method can effectively improve the relative geometric quality of images affected by platform jitter, with the images' jitter distortion being clearly eliminated. Compared to the conventional compensation method that bundle adjustment with GCPs, the absolute geometric accuracy can also be improved.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 130, August 2017, Pages 32-43
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 130, August 2017, Pages 32-43
نویسندگان
Mi Wang, Chengcheng Fan, Jun Pan, Shuying Jin, Xueli Chang,