کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4972838 1451242 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله
Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data
چکیده انگلیسی
As the basic units of urban areas, functional zones are essential for city planning and management, but functional-zone maps are hardly available in most cities, as traditional urban investigations focus mainly on land-cover objects instead of functional zones. As a result, an automatic/semi-automatic method for mapping urban functional zones is highly required. Hierarchical semantic cognition (HSC) is presented in this study, and serves as a general cognition structure for recognizing urban functional zones. Unlike traditional classification methods, the HSC relies on geographic cognition and considers four semantic layers, i.e., visual features, object categories, spatial object patterns, and zone functions, as well as their hierarchical relations. Here, we used HSC to classify functional zones in Beijing with a very-high-resolution (VHR) satellite image and point-of-interest (POI) data. Experimental results indicate that this method can produce more accurate results than Support Vector Machine (SVM) and Latent Dirichlet Allocation (LDA) with a larger overall accuracy of 90.8%. Additionally, the contributions of diverse semantic layers are quantified: the object-category layer is the most important and makes 54% contribution to functional-zone classification; while, other semantic layers are less important but their contributions cannot be ignored. Consequently, the presented HSC is effective in classifying urban functional zones, and can further support urban planning and management.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 132, October 2017, Pages 170-184
نویسندگان
, , ,