کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4972879 1451252 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery
ترجمه فارسی عنوان
تغییرات فضایی کلروفیل و محتوای نیتروژن برنج از تصاویر هیپرشکرال
کلمات کلیدی
برنج، شاخص رشد گیاه محتوای کلروفیل، محتوای نیتروژن، اندازه گیری های اشعه ماوراء بنفش
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
چکیده انگلیسی
Chlorophyll and nitrogen are the most essential parameters for paddy crop growth. Spectroradiometric measurements were collected at canopy level during critical growth period of rice. Chemical analysis was performed to quantify the total leaf content. By exploiting the ground based measurements, regression models were established for chlorophyll and nitrogen aimed indices with their corresponding crop growth variables. Vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the present Simple Ratio (SR) and Leaf Nitrogen Concentration (LNC) indices, which followed a linear and nonlinear relationship respectively, were completely different from published Tian et al. (2011). The nitrogen content varied widely from 1 to 4% and only 2 to 3% for paddy crop using present modified index models and Tian et al. (2011) respectively. The modified LNC index model performed better than the established Tian et al. (2011) model as far as estimated nitrogen content from Hyperion imagery was concerned. Furthermore, within the observed chlorophyll range obtained from the studied rice varieties grown in the rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) performed well in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content varied widely from 1.77 to 5.81 mg/g (LNC), 3.0 to 13 mg/g (OASVI), 0.5 to 10.43 mg/g (Gitelson), 2.18 to 10.61 mg/g (mSR) and 2.90 to 5.40 mg/g (MTCI). The spatial information of these parameters will help in proper nutrient management, yield forecasting, and will serve as inputs for crop growth and forecasting models for a precision rice agriculture system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 122, December 2016, Pages 17-29
نویسندگان
, ,