کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4972897 1451249 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Appearance learning for 3D pose detection of a satellite at close-range
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر سیستم های اطلاعاتی
پیش نمایش صفحه اول مقاله
Appearance learning for 3D pose detection of a satellite at close-range
چکیده انگلیسی
In this paper we present a learning-based 3D detection of a highly challenging specular object exposed to a direct sunlight at very close-range. An object detection is one of the most important areas of image processing, and can also be used for initialization of local visual tracking methods. While the object detection in 3D space is generally a difficult problem, it poses more difficulties when the object is specular and exposed to the direct sunlight as in a space environment. Our solution to a such problem relies on an appearance learning of a real satellite mock-up based on a vector quantization and the vocabulary tree. Our method, implemented on a standard computer (CPU), exploits a full perspective projection model and provides near real-time 3D pose detection of a satellite for close-range approach and manipulation. The time consuming part of the training (feature description, building the vocabulary tree and indexing, depth buffering and back-projection) are performed offline, while a fast image retrieval and 3D-2D registration are performed on-line. In contrast, the state of the art image-based 3D pose detection methods are slower on CPU or assume a weak perspective camera projection model. In our case the dimension of the satellite is larger than the distance to the camera, hence the assumption of the weak perspective model does not hold. To evaluate the proposed method, the appearance of a full scale mock-up of the rear part of the TerraSAR-X satellite is trained under various illumination and camera views. The training images are captured with a camera mounted on six degrees of freedom robot, which enables to position the camera in a desired view, sampled over a sphere. The views that are not within the workspace of the robot are interpolated using image-based rendering. Moreover, we generate ground truth poses to verify the accuracy of the detection algorithm. The achieved results are robust and accurate even under noise due to specular reflection, and able to initialize a local tracking method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISPRS Journal of Photogrammetry and Remote Sensing - Volume 125, March 2017, Pages 1-15
نویسندگان
, , , ,