کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4973612 | 1451647 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Motor imagery task classification using transformation based features
ترجمه فارسی عنوان
طبقه بندی وظایف تصویری موتور با استفاده از ویژگی های مبتنی بر تبدیل
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
This paper proposes a feature extraction method named as LP_QR, based on the decomposition of the LPC filter impulse response matrix of the signal of interest. This feature extraction method is inspired by LP_SVD and is tested in the context of motor imagery electroencephalogram. The extracted features are classified and benchmarked against extracted features of LP_SVD method. The two applied methods are also compared regarding the required execution time, which further highlights their respective merits and demerits. This paper closely examines the contribution of EEG channels of these two information extraction algorithms too. Consequently, a detailed analysis of the role of EEG channels concerning the nature of the extracted information is presented. This study is conducted on the BCI IIIa competition database of four motor imagery movements. The obtained results indicate that the proposed method is the better choice if simplicity is demanded. The investigation into the role of EEG channels reveals that level of contribution each channel can be quite dissimilar for different feature extraction algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biomedical Signal Processing and Control - Volume 33, March 2017, Pages 213-219
Journal: Biomedical Signal Processing and Control - Volume 33, March 2017, Pages 213-219
نویسندگان
Aida Khorshidtalab, Momoh J.E. Salami, Rini Akmeliawati,