کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
497367 862888 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evolving a Bayesian classifier for ECG-based age classification in medical applications
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Evolving a Bayesian classifier for ECG-based age classification in medical applications
چکیده انگلیسی

ObjectiveTo classify patients by age based upon information extracted from their electrocardiograms (ECGs). To develop and compare the performance of Bayesian classifiers.Methods and materialWe present a methodology for classifying patients according to statistical features extracted from their ECG signals using a genetically evolved Bayesian network classifier. Continuous signal feature variables are converted to a discrete symbolic form by thresholding, to lower the dimensionality of the signal. This simplifies calculation of conditional probability tables for the classifier, and makes the tables smaller. Two methods of network discovery from data were developed and compared: the first using a greedy hill-climb search and the second employed evolutionary computing using a genetic algorithm (GA).Results and conclusionsThe evolved Bayesian network performed better (86.25% AUC) than both the one developed using the greedy algorithm (65% AUC) and the naïve Bayesian classifier (84.75% AUC). The methodology for evolving the Bayesian classifier can be used to evolve Bayesian networks in general thereby identifying the dependencies among the variables of interest. Those dependencies are assumed to be non-existent by naïve Bayesian classifiers. Such a classifier can then be used for medical applications for diagnosis and prediction purposes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 8, Issue 1, January 2008, Pages 599–608
نویسندگان
, , , ,