کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
497526 862913 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effect of training characteristics on object classification: An application using Boosted Decision Trees
ترجمه فارسی عنوان
تأثیر ویژگی های آموزشی بر طبقه بندی شی: یک برنامه کاربردی با استفاده از درخت تصمیم گیری افزایش یافته
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

We present an application of a particular machine-learning method (Boosted Decision Trees, BDTs using AdaBoost) to separate stars and galaxies in photometric images using their catalog characteristics. BDTs are a well established machine learning technique used for classification purposes. They have been widely used specially in the field of particle and astroparticle physics, and we use them here in an optical astronomy application. This algorithm is able to improve from simple thresholding cuts on standard separation variables that may be affected by local effects such as blending, badly calculated background levels or which do not include information in other bands. The improvements are shown using the Sloan Digital Sky Survey Data Release 9, with respect to the type photometric classifier. We obtain an improvement in the impurity of the galaxy sample of a factor 2–4 for this particular dataset, adjusting for the same efficiency of the selection. Another main goal of this study is to verify the effects that different input vectors and training sets have on the classification performance, the results being of wider use to other machine learning techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Astronomy and Computing - Volume 11, Part A, June 2015, Pages 64–72
نویسندگان
, ,